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Presentation Outline

• Backgrounds/Motivation:
– Concepts of “Advanced Alloy Design”

• Update on FY17/18
– Development and optimization of “alumina-forming” high Cr FeCrAl

ferritic alloys

– Progress in “alumina-forming” austenitic stainless steels

• Summary and Future works
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Project Goals and Objectives
Goals: To identify and apply breakthrough alloy design concepts and strategies for incorporating 
improved creep strength, environmental compatibility/resistance, and weldability into three classes of 
alloys (ferritic, austenitic, and Ni-base) intended for use as heat exchanger tubes in fossil-fueled 
power generation systems at higher temperatures than possible with currently available alloys

Objectives: To develop and propose new creep-resistant, “alumina-forming”, cost-effective structural 
materials with guidance of computational thermodynamic tools

• Milestones (FY2018):

1. Prepare at least one hot-rolled plate of the second scale-up heat of “alumina-forming” high Cr FeCrAl ferritic 
alloy with high W content (December 2017, Met)

2. Complete microstructural characterization and map hardness analysis of GTAW plate of the second scale-
up heat (May 2018, in progress)

3. Complete cross-weld Charpy impact test, fracture toughness test, and short-term creep test (up to 2,000h) 
of the second scale-up heat (August 2018, in progress)

4. Complete alloy preparation and initial property screening including oxidation and ash-corrosion tests and 
fracture toughness test of proposed austenitic and Ni-based alloys (September 2018, in progress).
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Propose New Alloy Design Concepts for Heat Resistant 
Steels and Alloys

 “Compositional guide” to form stable alumina-scale 
for surface protection in extreme environments

 High temperature strength through multiple second-
phase precipitate strengthening

 Apply the design strategy to three different classes 
of fossil energy structural materials
– Ferritic (~600°C), Ferritic-Martensitic (~600-620°C) 

 high Cr containing FeCrAl alloys

– Austenitic (up to 650°C) 

 Alumina-Forming Austenitic stainless steels

– Ni-base (>700°C)

 Alumina-Forming Ni-base alloys

Oxidation/Corrosion

https://mts.com/en/products/industry/materials-testing/index.htm
http://www.ccj-online.com/prioritization-of-issues-improves-hrsg-reliability-performance/`

High-temp. Strength

Weldments
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Alumina-scale is Attractive for High-temperature Use with 
Water-vapor Containing Environments

Oxidation Data for Chromia-forming 347 SS 
(18Cr-11Ni) 

(at 650C in Air and Air + 10% Water Vapor) 

Data: B.A. Pint
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Solar Turbines 4.6 MW Mercury 50 recuperated 
low NOx gas turbine engine

Targets: Increase Service Temperature for Higher Efficiency

Alstom USC and AUSC Power Plants – J. Marion -
NTPC/USAID Int. Conf. SC Plants - New Delhi, India, 
22 Nov. 2013 – P 8

• Recuperator
• Casing

• Boiler
• Heat exchanger
• Header
• Superheatrer
• Reheater

• Boiler Tubing
• Steam Turbine
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Currently Available Alumina-forming Alloys

• Ni-base superalloys:
– Ni matrix (FCC) with intermetallic second-phase precipitate strengthening 

(e.g. coherent L12-Ni3Al)

– Attractive for high temperature use, but expensive

• FeCrAl: 
– Ferritic steels (BCC), mainly used as heating elements (e.g. Kanthal®)

– Inexpensive, but weak at elevated temperature

– PM-ODS approach improved high-temperature properties, but expensive

• AFA (Alumina-Forming Austenitic) steels:
– Austenitic steels (FCC), developed as heat resistant steels at ORNL

– Combined alumina-scale formability and multi second-phase strengthening

– Fill the temperature gap between “Ferritic steels” and “Ni-base alloys”
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Effect of Minor Alloying on Alumina-scale Formation (AFA)

Fe, Cr-rich oxide

Al-rich oxide
(internal oxidation = bad) 10mm

Fe-14Cr-20Ni-2.5Al-0.5V-0.3Ti-0.1C

SEM Cross-Sections After 72 h at 800C in Air

Metal

•Compositional guideline to form protective alumina: 
- Ti+V < 0.3 wt.%; Nb > (0.6-1) wt.%; N < 0.02 wt.%

Yamamoto et al. Science, 316 (2007) 433-436
Brady et al. JOM, 60 (2009) 12-18

#59740 (BSE 10kx)
2mm

Al2O3

Note: 5x Higher Magnification for Alloy with Nb

Fe-14Cr-20Ni-2.5Al-0.9Nb-0.1C

Metal

Fe-14Cr-20Ni-2.5Al-0.5V-0.3Ti-0.1C
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Austenite stabilizer

Positive/Negative Effects on Alumina-forming Alloys

Solid-solution hardening

MC/Laves forming elements

Improve oxidation resistance

Improve oxidation resistance

Stable alumina-scale formation

Precipitate hardening

Degrade oxidation resistance
(when combined)

N getter (for air-melt)

Degrade oxidation resistance

Improve fluidity

May degrade weldabilityL12 stabilizer

Expensive
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Alumina-Forming Ferritic Steels
(High Cr containing FeCrAl alloys)
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Design Corrosion/Oxidation/Creep Resistant Ferritic Steels
Fe-30Cr-3Al
base alloys

1Nb

2Nb

1Nb-2W

1Nb-2Mo

1Nb-1Ti

BCC-Cr (α-Cr)

Liquid
BCC-Fe

700ºC

Fe2Nb-Laves

(BCC-Fe matrix)

Fe-30Cr-3Al + Nb, Zr
(Rolled at 300°C + Annealed at 1200°C)

Fe-30Cr-3Al +W, Nb, Si
(Aged at 700°C)

Laves-Fe2Nb

1µm500µm

OM SEM-BSE

Phase equilibrium
(JMatPro v.8)

http://www.geocities.jp/ohba_lab_ob
_page/structure5.html

Fe:       Nb:

C14: Laves-Fe2Nb

Important design factors for creep:

• Fraction of Laves phase at 700°C

• BCC solvus temperature

Fe-30Cr-3Al-0.2Si-1Nb

Yamamoto et al. TMS2017
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Proposed Alloy Composition Ranges 

Model alloys: Fe-30Cr-3Al-0.2Si-1Nb + (Nb, Ti, Mo, W, Zr), wt.%

Engineering alloys: Fe-30Cr-3Al-0.15Si-1Nb-6W-0.5Mo-0.3Ti-0.3Ni-0.4Mn-0.03C-0.05Y
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Yamamoto et al. ASME-ETAM 2018 (to be published)
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Minimum Creep Rate Prediction 
(Ferritic Fe-30Cr-3Al+Nb base, 700°C/50MPa)

2μm

TEM-BFI
Laves in 

BCC-matrix

2Nb model alloy
(crept at 700C/70MPa/1750h)

Shassere et al. Met. Mat. Trans. A (2017)
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Slow Coarsening Kinetics in 2Nb and 1Nb-6W 
Alloys X axis: particle diameter; Y axis: Cumulative Fraction, FCA = Fe-30Cr-3Al base, wt.% (model alloys)

FCA-1Nb

FCA-1Nb-5W

FCA-2Nb FCA-1Nb-1Ti

Stable

FCA-1Nb-6W

Stable

2 μm

SEM-BSE

FCA-1Nb-6W, 700°C/1000h

Kuo et al. TMS 2018
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Data: B.A. Pint
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High Surface Protection in Ash-Corrosive Environments
2Nb (CC05-7, 2000h)

1Nb-6W (CC15-2, 1500h)

Binary Fe-30Cr (RF30, 500h)

Ash Al2O3 16.9%, SiO2 22.6%, CaO 0.9%, Fe2O3 7.8%, KOH 1%, TiO2 0.6%, MgO
0.2%, Fe2(SO4)3 19.8%, MgSO4 10.1%, K2SO4 4.8%, Na2SO4 15.1%

Gas N2, CO2, H2O, O2, SO2

Data: B.A. Pint

Ash-Corrosion Test at 700°C, 500h Cycles 

Yamamoto et al. ASME-ETAM 2018 (to be published)
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Potential Issues with Low Ductility at RT

25
.4

m
m

RT RT 300°C

700°C

700°C 750°C 800°C

Cold/Warm deformation Hot deformation 

(ASTM-E8/E21)

1Nb-6W Engineering alloy, SS curves

750°C

800°C

600°C

300°C

RTRT
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Process/Alloy Optimization for Grain Refinement in Progress

After additional TMT**As processed*

0Ti-0.1Zr

1Nb-6W-0.5Mo-0.3Ti (Base)

0Ti-0.3Zr

1Nb-6W-0.5Mo-0Ti+Zr (Modified)
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Alumina-Forming Austenitic Stainless Steels
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Initiated Property Screening of Newly Proposed Advance 
AFA alloys
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(M23C6 + MC)

(25Ni)

(20Ni)

(16Ni)

18Cr

(Laves + M23C6)

(M23C6)

(Laves)

(1Cu)

(3Cu)
2.5Nb-0.1C

(T/P347HFG)

M23C6 + MC strengthening (CA01 and CA02):

Fe-14Cr-25Ni-4Al-Mn-Nb-C with Cu, Hf, Y

Fe2W + M23C6 strengthening (CA03-CA05):

Fe-14Cr-(16-25)Ni-(3-4)Al-Mn-Nb-C with W, Cu, Hf, Y

High Cr containing AFA (CA06 and CA07):

Fe-18Cr-25Ni-4Al-Mn-Nb-C with W, Cu, Hf, Y

Reference AFA (OC4):

Fe-14Cr-25Ni-3.5Al-2.5Nb-0.1C base

NF709*

Super 304H*

T/P347HFG*

*NIMS creep datasheet

AFA
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Summary

Successfully demonstrated “New Alloy Design Concepts for Creep-resistant, 
Alumina-forming Alloys for High-temperature Fossil Applications” through 
development of two different classes of Fe-base alloys:

High Cr containing FeCrAl Ferritic alloy (Fe-30Cr-3Al-1Nb-6W base):

– Designed with computational thermodynamic tools

– Promising high-temperature properties
• Creep-rupture tests 

• Good surface protection in both steam containing environment and fire-side corrosive circumstances

– Optimization of processability/toughness is in progress
• Searching for potential applications in various industries

Alumina-forming Austenitic alloys (Fe-Cr-Ni-Al-Nb-C-W-Cu-Hf-Y):

– Proposed three different alloy designs (by following compositional guideline)

– Property screening in progress 
• creep-rupture test at 750/800°C

• oxidation at 800°C in 10% water vapor
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Future Works

High Cr containing FeCrAl alloys:
– Cross-weld property evaluation:

• A metal-core weld filler wire production was completed

– Seek potential applications:
• Thin plate/sheet/foil products for heat exchangers

• Cladding (weld overlay) for protective coating; additively manufactured production

Alumina-Forming Austenitic Stainless Steels:
– Continue property evaluation of new AFA alloys with various strengthening second-phases:

• List potential candidate microstructural designs for near-future developmental efforts (e.g. EEM)

– Seek potential applications:
• Various industries are interested in the AFA alloys; communications are in progress

Alumina-Forming Ni-base alloys:
– Leveraged with other DOE-funded projects for wrought alumina-forming Ni-base alloys:

• Evaluation of coherent L12 strengthening high-temperature Ni-Fe base wrought alloy is in progress

http://www.titanovalaser.com/titanova-c_benefits.html
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Thanks
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Tensile Properties Compared to F-M Steel (Grade 91)
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History of “Heat-Resistant/Stainless Steel Development”

• Fe-P: 
– “non-rusting steel”, India, ~B.C. 400

• Fe-Cr (ferritic stainless steel):
– Monnartz, Germany, 1911
– Dantsizen and Becket, USA, 1911-12

• Fe-Cr-Ni (martensitic/austenitic stainless steels): 
– Struss and Maurer, “Nirosta”, Germany, 1912
– Haynes, “Martensitic stainless steels”, USA, 1912
– Brearley, “Martensitic stainless steels”, UK, 1912

• Carbon steels: Steam locomotives, etc.
– Quench and temper/annealing
– Tempered martensite / pearlite transformation

• Low alloy steels: Supercritical(SC)
– Normalization/quench and temper/annealing
– Martensitic/bainitic transformation

• High Cr (9-12) FM steels: Ultra-supercritical (USC)
– Normalization and temper
– Introduction of MX (VN, NbC)

• Advanced austenitic steels: USC
– Austenite (FCC) matrix, Fe-Ni base
– Solution hardening/ carbide strengthening 

• Ni-base alloys: Advanced USC (A-USC)
– Austenite (FCC) matrix, Ni-base
– Solution hardening/ carbide or 

intermetallic strengthening 

•
•

Heat-resistant steels and alloys Stainless steels and alloys

https://railroad.lindahall.org/essays/locomotives.html
http://www.tppboilers.com/super-heaters-coils.php#
http://www.new-york.me.uk/chrysler_building.htm
http://locomotive.wikia.com/wiki/CB%26Q_Class_S-4a


